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Queen Dido

» arrived in North Africa,
promised as much land as she
could enclose with an ox-hide

» cut the hide into long strip to
enclose a circle

Question: Maximise the area
enclosed by a given perimeter
—> Isoperimetric problem
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The mathematics of soap films

soap water

area
(to minimise)

thickness
(to maximise)

Experiment
» Maximising thickness = Minimising
area
» The hole solves isoperimetric problem

Moral: Soap films minimise area

Minimal surfaces
= surfaces that locally minimise area
= vanishing mean curvature
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Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

2
A<t
~ 4r

(cf. talk by Denis Bonneure and Frangois Thilmany in BSSM 2011)

Proof.
Suppose L = 27, 7 : [0,27] — R? by arc-length v(t) = (x(t), y(t)):

(by Fourier) x(t) = Z ane™, _ Z b, et

nezZ nezZ

27
2= [P 5 = 3 (2l + (o)
0

1 1 1
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Catenoid
Catenary
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Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in R” satisfy A < %.
» Carleman (1921): minimal discs

» Reid (1959), Hsiung (1961): minimal surfaces with connected
boundary

» Osserman—Schiffer (1975), Feinberg (1977): minimal annuli
» Li—Schoen—Yau (1984): weakly connected boundary
» Choe (1990): radially connected boundary

» Brendle (2020): codimension at most 2

Today's goal: prove Choe's result.
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Strategy

Notations
3 : minimal surface of R"”, v = 0X: boundary
radially connected from O: 30 € L s.t. {d(0,x):x€~v} CRis

connected.
Remark
~ has < 2 components — radially connected.
A< — ()

2 steps:
» Prove that area of a minimal surface is less than area of the “cone”

» Prove (1) for “cones”
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Monotonicity theorem

Y C R": surface,

O: a point (not necessarily on X).
A(r): area of X inside the ball B(O,r)
Q(r) = mr?: area of equatorial disc

Theorem
If X is minimal then a0 is increasing in r. This also holds for tube
extension of a minimal surface.

A(r)

Corollary

1. A minimal surface whose boundary is a curve v has less area than
the cone C, built uppon .

2. If O € &, the point O sees v with an “angle” > 21
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Choose O to be on the surface. C,: cone at O
» C, has angle > 27.

» C, is radially connected.



Reduce to cones

Choose O to be on the surface. C,: cone at O
» C, has angle > 27.
» C, is radially connected.

Need to prove: A < % for C,.
(See blackboard...)
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