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Queen Dido and the city of Carthage
The city of Carthage

Figure: Lord Kelvin’s lecture to the
Royal Institution, 1893

Queen Dido
▶ arrived in North Africa,

promised as much land as she
could enclose with an ox-hide

▶ cut the hide into long strip to
enclose a circle

Question: Maximise the area
enclosed by a given perimeter
−→ Isoperimetric problem
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The mathematics of soap films

Experiment

▶ Maximising thickness = Minimising
area

▶ The hole solves isoperimetric problem

Moral: Soap films minimise area
Minimal surfaces
= surfaces that locally minimise area
= vanishing mean curvature
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Isoperimetric inequality
Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

A ≤ L2

4π
.

(cf. talk by Denis Bonneure and François Thilmany in BSSM 2011)

Proof.
Suppose L = 2π, γ : [0, 2π] −→ R2 by arc-length γ(t) = (x(t), y(t)):

(by Fourier) x(t) =
∑
n∈Z

ane
int , y(t) =

∑
n∈Z

bne
int

2π =

∫ 2π

0
|ẋ |2 + |ẏ |2 =

∑
n2(|an|2 + |bn|2)

A =
1
2

∫
γ

(xdy − ydx) =
1
2

∑
in(a−nbn − anb−n) ≤

1
2
.2π = π
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Minimal surfaces

▶ Lagrange (1762) wrote down the equation and asked the Plateau
problem.

▶ first examples (catenoid and helicoid) found by Meusnier (1776).
More examples constructed by Weierstrass–Enneper (1863).

▶ In 1930, Douglas and Rado solved the Plateau problem.
▶ . . .

Catenoid
Catenary
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Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in Rn satisfy A ≤ L2

4π .

▶ Carleman (1921): minimal discs
▶ Reid (1959), Hsiung (1961): minimal surfaces with connected

boundary
▶ Osserman–Schiffer (1975), Feinberg (1977): minimal annuli
▶ Li–Schoen–Yau (1984): weakly connected boundary
▶ Choe (1990): radially connected boundary
▶ Brendle (2020): codimension at most 2

Today’s goal: prove Choe’s result.
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Strategy

Notations
Σ: minimal surface of Rn, γ = ∂Σ: boundary

radially connected from O: ∃O ∈ Σ s.t. {d(O, x) : x ∈ γ} ⊂ R is
connected.

Remark
γ has ≤ 2 components −→ radially connected.

A ≤ L2

4π
(1)

2 steps:
▶ Prove that area of a minimal surface is less than area of the “cone”
▶ Prove (1) for “cones”
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Monotonicity theorem

Σ ⊂ Rn: surface,
O: a point (not necessarily on Σ).

A(r): area of Σ inside the ball B(O, r)
Q(r) = πr2: area of equatorial disc

Theorem
If Σ is minimal then A(r)

Q(r) is increasing in r . This also holds for tube
extension of a minimal surface.

Corollary
1. A minimal surface whose boundary is a curve γ has less area than

the cone Cγ built uppon γ.
2. If O ∈ Σ, the point O sees γ with an “angle” ≥ 2π
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Reduce to cones

Choose O to be on the surface. Cγ : cone at O
▶ Cγ has angle ≥ 2π.
▶ Cγ is radially connected.

Need to prove: A ≤ L2

4π for Cγ .
(See blackboard...)
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