Area and Perimeter of soap bubbles

BSSM 2022

Manh Tien NGUYEN ULB

31/08/2022

Queen Dido and the city of Carthage

The city of Carthage

If the land is all of equal value the general solution of the problem shows that her line of ox-hide should be laid down in a circle. It shows also that if the sea is to be part of the
boundary, starting, let us say, southward from any

given point, A, of the coast, the inland bounding line must at its far end cut the coast line perpendicularly. Here, then, to complete our solution, we have a very curious and interesting, but not at all easy, geometrical question to

Figure: Lord Kelvin's lecture to the Royal Institution, 1893

Queen Dido and the city of Carthage

The city of Carthage

```
If the land is all of equal value the general
solution of the problem shows that her line of
ox-hide should be laid down in a circle. It
shows also that if the sea is to be part of the
boundary, starting, let us say, southward from any
```


Queen Dido

- arrived in North Africa, promised as much land as she could enclose with an ox-hide

Figure: Lord Kelvin's lecture to the Royal Institution, 1893

Queen Dido and the city of Carthage

The city of Carthage

```
If the land is all of equal value the general
solution of the problem shows that her line of
ox-hide should be laid down in a circle. It
shows also that if the sea is to be part of the
boundary, starting, let us say, southward from any
```


Queen Dido

- arrived in North Africa, promised as much land as she could enclose with an ox-hide
- cut the hide into long strip to enclose a circle

Figure: Lord Kelvin's lecture to the Royal Institution, 1893

Queen Dido and the city of Carthage

The city of Carthage

```
If the land is all of equal value the general
solution of the problem shows that her line of
ox-hide should be laid down in a circle. It
shows also that if the sea is to be part of the
boundary, starting, let us say, southward from any
```


given point, A , of the coast, the inland bounding line must at its far end cut the coast line perpendicularly. Here, then, to complete our solution, we have a very curious and interesting, but not at all easy, geometrical question to

Queen Dido

- arrived in North Africa, promised as much land as she could enclose with an ox-hide
- cut the hide into long strip to enclose a circle

Question: Maximise the area enclosed by a given perimeter

Figure: Lord Kelvin's lecture to the Royal Institution, 1893

Queen Dido and the city of Carthage

The city of Carthage

```
If the land is all of equal value the general
solution of the problem shows that her line of
ox-hide should be laid down in a circle. It
shows also that if the sea is to be part of the
boundary, starting, let us say, southward from any
```


given point, A , of the coast, the inland bounding line must at its far end cut the coast line perpendicularly. Here, then, to complete our solution, we have a very curious and interesting, but not at all easy, geometrical question to

Queen Dido

- arrived in North Africa, promised as much land as she could enclose with an ox-hide
- cut the hide into long strip to enclose a circle

Question: Maximise the area enclosed by a given perimeter
\longrightarrow Isoperimetric problem

Figure: Lord Kelvin's lecture to the Royal Institution, 1893

The mathematics of soap films

Experiment

The mathematics of soap films

Experiment

- Maximising thickness $=$ Minimising area

The mathematics of soap films

Experiment

- Maximising thickness $=$ Minimising area
- The hole solves isoperimetric problem

The mathematics of soap films

Experiment

- Maximising thickness $=$ Minimising area
- The hole solves isoperimetric problem

Moral: Soap films minimise area
Minimal surfaces
= surfaces that locally minimise area
$=$ vanishing mean curvature

Isoperimetric inequality

Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

$$
A \leq \frac{L^{2}}{4 \pi} .
$$

Isoperimetric inequality

Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

$$
A \leq \frac{L^{2}}{4 \pi}
$$

(cf. talk by Denis Bonneure and François Thilmany in BSSM 2011)
Proof.
Suppose $L=2 \pi, \gamma:[0,2 \pi] \longrightarrow \mathbb{R}^{2}$ by arc-length $\gamma(t)=(x(t), y(t))$:

$$
\begin{gathered}
\text { (by Fourier) } x(t)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n t}, \quad y(t)=\sum_{n \in \mathbb{Z}} b_{n} e^{\text {int }} \\
2 \pi=\int_{0}^{2 \pi}|\dot{x}|^{2}+|\dot{y}|^{2}=\sum n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \\
A=\frac{1}{2} \int_{\gamma}(x d y-y d x)=\frac{1}{2} \sum \operatorname{in}\left(a_{-n} b_{n}-a_{n} b_{-n}\right) \leq \frac{1}{2} \cdot 2 \pi=\pi
\end{gathered}
$$

Minimal surfaces

- Lagrange (1762) wrote down the equation and asked the Plateau problem.

Minimal surfaces

- Lagrange (1762) wrote down the equation and asked the Plateau problem.
- first examples (catenoid and helicoid) found by Meusnier (1776). More examples constructed by Weierstrass-Enneper (1863).
- In 1930, Douglas and Rado solved the Plateau problem.

Minimal surfaces

- Lagrange (1762) wrote down the equation and asked the Plateau problem.
- first examples (catenoid and helicoid) found by Meusnier (1776). More examples constructed by Weierstrass-Enneper (1863).
- In 1930, Douglas and Rado solved the Plateau problem.

Catenoid

Catenary

Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in \mathbb{R}^{n} satisfy $A \leq \frac{L^{2}}{4 \pi}$.

Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in \mathbb{R}^{n} satisfy $A \leq \frac{L^{2}}{4 \pi}$.

- Carleman (1921): minimal discs
- Reid (1959), Hsiung (1961): minimal surfaces with connected boundary
- Osserman-Schiffer (1975), Feinberg (1977): minimal annuli
- Li-Schoen-Yau (1984): weakly connected boundary
- Choe (1990): radially connected boundary
- Brendle (2020): codimension at most 2

Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in \mathbb{R}^{n} satisfy $A \leq \frac{L^{2}}{4 \pi}$.

- Carleman (1921): minimal discs
- Reid (1959), Hsiung (1961): minimal surfaces with connected boundary
- Osserman-Schiffer (1975), Feinberg (1977): minimal annuli
- Li-Schoen-Yau (1984): weakly connected boundary
- Choe (1990): radially connected boundary
- Brendle (2020): codimension at most 2

Today's goal: prove Choe's result.

Strategy

Notations
Σ : minimal surface of $\mathbb{R}^{n}, \gamma=\partial \Sigma$: boundary

Strategy

Notations
Σ : minimal surface of $\mathbb{R}^{n}, \gamma=\partial \Sigma$: boundary
radially connected from $O: \exists O \in \Sigma$ s.t. $\{d(O, x): x \in \gamma\} \subset \mathbb{R}$ is connected.

Remark
γ has ≤ 2 components \longrightarrow radially connected.

Strategy

Notations
Σ : minimal surface of $\mathbb{R}^{n}, \gamma=\partial \Sigma$: boundary
radially connected from $O: \exists O \in \Sigma$ s.t. $\{d(O, x): x \in \gamma\} \subset \mathbb{R}$ is connected.

Remark

γ has ≤ 2 components \longrightarrow radially connected.

$$
\begin{equation*}
A \leq \frac{L^{2}}{4 \pi} \tag{1}
\end{equation*}
$$

2 steps:

- Prove that area of a minimal surface is less than area of the "cone"
- Prove (1) for "cones"

Monotonicity theorem

$$
\begin{aligned}
& \Sigma \subset \mathbb{R}^{n}: \text { surface, } \\
& O: \text { a point (not necessarily on } \Sigma \text {). }
\end{aligned}
$$

Monotonicity theorem

$\Sigma \subset \mathbb{R}^{n}:$ surface,
O : a point (not necessarily on Σ).
$A(r)$: area of Σ inside the ball $B(O, r)$
$Q(r)=\pi r^{2}$: area of equatorial disc

Monotonicity theorem

$\Sigma \subset \mathbb{R}^{n}:$ surface,
$O:$ a point (not necessarily on $\Sigma)$.
$A(r):$ area of Σ inside the ball $B(O, r)$
$Q(r)=\pi r^{2}:$ area of equatorial disc

Theorem
If Σ is minimal then $\frac{A(r)}{Q(r)}$ is increasing in r.

Monotonicity theorem

$\Sigma \subset \mathbb{R}^{n}$: surface,
$O:$ a point (not necessarily on $\Sigma)$.
$A(r):$ area of Σ inside the ball $B(O, r)$
$Q(r)=\pi r^{2}$: area of equatorial disc

Theorem

If Σ is minimal then $\frac{A(r)}{Q(r)}$ is increasing in r. This also holds for tube extension of a minimal surface.

Monotonicity theorem

$\Sigma \subset \mathbb{R}^{n}:$ surface,
$O:$ a point (not necessarily on $\Sigma)$.
$A(r)$: area of Σ inside the ball $B(O, r)$
$Q(r)=\pi r^{2}:$ area of equatorial disc

Theorem

If Σ is minimal then $\frac{A(r)}{Q(r)}$ is increasing in r. This also holds for tube extension of a minimal surface.

Corollary

1. A minimal surface whose boundary is a curve γ has less area than the cone C_{γ} built uppon γ.
2. If $O \in \Sigma$, the point O sees γ with an "angle" $\geq 2 \pi$

Reduce to cones

Choose O to be on the surface. C_{γ} : cone at O

- C_{γ} has angle $\geq 2 \pi$.
- C_{γ} is radially connected.

Reduce to cones

Choose O to be on the surface. C_{γ} : cone at O

- C_{γ} has angle $\geq 2 \pi$.
- C_{γ} is radially connected.

Need to prove: $A \leq \frac{L^{2}}{4 \pi}$ for C_{γ}. (See blackboard...)

References

- [Choe 1990] The isoperimetric inequality for a minimal surface with radially connected boundary.
- [Gromov 1983] Filling Riemannian manifolds.
- [Thurston 1997] Three-dimensional geometry and topology.
- [White 2013] Lectures on Minimal Surface Theory.

